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A B S T R A C T 

A-kinase anchoring protein 79/150 (AKAP79/150) is an important scaffolding protein, which anchors 

various important proteins to locate in appropriate synaptic domains to regulate excitatory synaptic intensity. 

With sweeping advances in the biology of AKAP79/150 and its critical role in the pathophysiology of 

various human disorders, more and more evidence is breeding new opportunities for potential therapeutic 

intervention in an attempt to improve the clinical outcomes of those patients. Herein, we review the basic 

structure and main functions of AKAP79/150, focusing on the pathophysiological mechanisms of 

AKAP79/150 in different human disorders, with a particular emphasis on the inflammatory pain, epilepsy, 

and depression, to discuss their potential therapeutic intervention value in patients with those diseases. 

                        © 2023 Wei-Rong Fang, Ya-Hui Hu & Feng Chen. Published by Progress in Neurobiology 

1. Introduction 

 

AKAP79 is a prototypic A-kinase-anchoring protein (AKAP), with three 

orthologs (comprising human AKAP79, rodent AKAP150, and bovine 

AKAP75, gene name AKAP5), which fulfills key physiological roles. As 

signal-organizing molecules, AKAPs tether those noncatalytic 

regulatory proteins, which profoundly influence the action of protein 

kinases and phosphatases, in subcellular environments to control the 

phosphorylation state of neighboring substrates [1].  

 

AKAP79/150 directs its cohort of anchored enzymes toward selected 

transmembrane proteins to facilitate their efficient regulation [1]. For 

example, AKAP79/150 connects with N-methyl-D-aspartate receptors 

(NMDARs) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid receptors (AMPARs) through two membrane-associated guanylate 

kinase (MAGUK) family proteins synapse-associated protein 97 

(SAP97) and post synaptic density protein 95 (PSD-95), and also recruits 

protein kinase A (PKA), protein kinase C (PKC), and calcineurin (CaN) 

in appropriate synaptic domains to regulate excitatory synaptic strength 

[2-9].  

 

AKAP79/150 also coordinates signal transduction at different 

subcellular locations and participate in regulating normal physiological 

functions of cells [10]. AKAP79/150 organizes Ca2+/calmodulin-

dependent protein phosphatase (PP2B, also known as CaN), calmodulin, 

cAMP-dependent PKA, PKC, and the transcription factor nuclear factor 

of activated T cells (NFAT) into a membrane-delimited signalosome at 

the plasma membrane [11-13]. Upon Ca2+ store depletion, the stromal-

interactingmolecule-1 protein on the plasma membrane targets Orai1 to 

AKAP79 signaling complex, which interacts with the AKAR on the N-

terminus of the Orai1 Ca2+ channel [14-16]. The Ca2+ spikes can transmit 

signals from the distal dendrite to the nucleus by stimulating CaN to 

dephosphorylation and activating NFAT [12, 17-23]. The neuronal 

activity regulated by M current induces NFAT-mediated transcriptional 

up-regulation of KCNQ channels and inhibits neuronal excitability. This 
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signal pathway limits neuronal hyperexcitation through negative-

feedback, which is the basis of myriad diseases such as chronic pains, 

epilepsy and cardiovascular dysfunction [24]. 

 

Accumulating evidence suggests that aberrant expression of 

AKAP79/150 contributes to the pathophysiological mechanisms of 

various human disorders. Both chronic restraint stress and unpredictable 

chronic mild stress can increase the expression level of AKAP150 

protein in the basolateral amygdala of depressive mice and induce its 

redistribution into the synapses. Moreover, studies have also shown that 

the expression of AKAP150 in dorsal root ganglia neurons of 

inflammatory pain mice is significantly increased, and the pain response 

is reduced in Akap5 knockout mice [25]. In addition, the palmitoylation 

of AKAP150 is significantly increased in the hippocampus of epileptic 

mice [26], and inhibition of palmitoylation of AKAP79/150 is helpful to 

the anticonvulsive effect of valproic acid, a seizure treatment drug [27]. 

 

In this review, we present an overview on the physiological roles of 

AKAP79/150 in the brain and deregulations of AKAP79/150 expression 

and its substrates in various disorders, like inflammatory pain, epilepsy, 

and depression, providing a new entry point for the diagnosis and 

treatment intervention for these disorders. 

 

2. Biological Characteristics of AKAP79/150  

2.1. Overview of AKAPs 

 

AKAPs belong to a family of scaffolding proteins, which anchor PKA 

and other important proteins, including protein kinase, protein 

phosphatase, phosphodiesterase, G protein coupled receptors (GPCRs) 

[10, 28]. AKAPs are also a group of functionally related regulatory 

proteins with different structures, which play an important role in 

ensuring the accuracy of intracellular PKA-dependent signaling 

pathways and coordinating the precision of signal transduction at 

different subcellular [29]. Therefore, AKAPs are not only widely 

involved in the regulation of normal physiological functions of cells, but 

also play a vital role in various human diseases [10].  

 

Indeed, more than 70 different AKAPs have been isolated and identified 

so far [10]. AKAPs can form multi-protein complexes in different 

subcellular regions that integrate the cyclic adenosine monophosphate 

(cAMP) signaling with pathways. Evidence suggests that AKAP can 

recognize and specifically anchor activated GPCR. Subsequently, other 

proteins anchored to AKAP are sequentially activated to generate, 

utilize, degrade, and regulate the synthesis of cAMP [30]. In addition, 

cAMP activation of PKA anchoring to AKAPs is crucial for regulating 

human dendritic cells lipid rafts antigen presentation [31, 32]. AKAPs 

signaling complexes have been identified as crucial regulators of a 

variety of glutamate receptors and ion channels [8, 33, 34]. In the past 

decades, as a member of the AKAPs, many studies have focused on the 

distribution and function of AKAP79/150 in the brain [8, 35, 36]. 

 

2.2. Structure of AKAP79/150 

 

AKAP79/150 is a prominent synapse-targeted AKAP, which is mainly 

expressed in the central nervous system and play an important role in 

signal transmission and synaptic plasticity [37]. AKAP150 is anchored 

by binding the hydrophobic surface of an amphiphilic helical molecule 

in its molecule to the N-terminal of the PKA regulatory subunit dimer 

(RII) [38]. Furthermore, in addition to targeting PKA, AKAP150 also 

has binding sites with other signal molecules, such as PKC, PP2B, some 

membrane receptors, and ion channels, so that different signal pathways 

can interact with each other, which is conducive to the integration and 

transmission of specific information in cells [39, 40]. 

 

AKAP79/150 contains a unique targeting sequence near the N-terminal, 

also known as the targeting domain. In this domain, AKAP79/150 has 

three different basic targeting sub-domains (A, B, and C domains) 

(Figure 1). Three membrane-bound basic regions can bind with 

phosphatidylinositol 4,5-bisphosphate (PIP2) and target specific 

subcellular regions, making PKA very close to its specific substrate 

molecules, and the catalytic reaction can be carried out efficiently [40, 

41]. AKAP79/150 binds to PKC through the A sub-domain of the basic 

N-terminal targeting domain [42], but binds to a variety of adenylyl 

cyclases (ACs) isomers through the B sub-domain of the targeted 

domain [43, 44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: Domain organization of the AKAP79/150 Scaffolding protein. Amino acid numbering is given for rodent AKAP150 from 1 at the N-terminal 

to 745 at the C-terminal. The locations of the diverse binding sites and the indicated binding partners are shown. See the text for more details. 
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AKAP79 anchors CaN through the 'PxIxIT' type docking motif near the 

C-terminal [41, 45, 46]. Between the targeting domain and the CaN 

anchoring domain, AKAP150 has an internal structure that binds to 

MAGUK. In addition, through the PDZ (an initialism combining the first 

letters of the first three proteins discovered to share the domain-PSD-95, 

Drosophila disc large tumor suppressor (DLG1), and Zonula occludens-

1 protein (ZO-1)) domains in MAGUKs, AKAP150 is connected to the 

NMDARs and the C-terminal of AMPARs [47-50]. 

 

2.3. Function of AKAP79/150 

 

AKAP79/150 can combine with GPCR superfamily members β2-

adrenergic receptor [51, 52], orchestrating the interaction of F-actin [53], 

PIP2 [41], MAGUKs [48], cadherin cell adhesion molecule [54, 55], 

ACs [43, 56, 57], protein kinase [1], and protein phosphatase [58], and 

regulating active-dependent synaptic transmission by connecting with 

AMPA receptors [48], heat-activated transient receptor potential family 

V type 1 (TRPV1, also known as the capsaicin receptor) channels [59], 

L-type calcium (CaV) channels [60], M-type potassium (KCNQ, Kv7) 

channels [61], and acid sensing ion channels [62] in PSD. PSD 

scaffolding proteins are an important structural basis of synaptic 

transmission and play an important supporting role in the integration of 

multiple receptors and signal molecules [63]. A variety of protein 

kinases and protein phosphatases, including PKA, PKC, and CaN, are 

integrated into the PSD region via AKAP150 and play an important 

regulatory role in the dendritic spine stability [49]. 

 

cAMP-dependent PKA is a tetrameric molecule consisting of a tetramer 

that contains a regulatory (R) subunit dimer, which include four different 

phenotypes of RIα, RIβ, RIIα and RIIβ [64-68], and two catalytic (C) 

subunits [69]. When the body is stimulated by the outside world, it will 

trigger a signal cascade reaction and activate the cAMP signaling 

pathway. The activated cAMP is combined with the R subunit of PKA, 

causing the C subunit to be released from PKA and activated. The 

activated catalytic subunit plays a role in signal transduction. PKA-

mediated signaling pathways play an important role in the function of 

many neurons and the formation of learning and memory, and are also 

involved in various forms of synaptic plasticity [2, 70]. 

 

The PKC family of phospholipid-dependent serine/threonine kinase 

consists of different isozymes (PKCα, PKCβI, PKCβII, PKCγ, PKCδ, 

PKCε, PKCη, PKCθ, PKCζ, and PKCι/λ) [71, 72], all of which have a R 

domain that can bind to PKC activators and a C domain, and variable 

regions [72]. The function of PKC is to phosphorylate other proteins by 

interacting with them to participate in synaptic plasticity [73, 74]. PKC 

also modulates the targeting of the NR1 subunit of NMDAR to the 

postsynaptic membrane [75]. The serine/threonine phosphatase CaN 

holoenzyme is a heterodimeric protein, consisting of a C subunit A and 

a R subunit B [76, 77]. CaN is not only important for cardiac 

development, pathophysiology, and nervous system development [78], 

but also as a structural protein to control synaptic function and 

behavioral learning [79]. Interestingly, a recent study discover that CaN 

can directly suppress the activity of PKA when removing phosphate 

from substrates initiated by PKA, thereby avoiding the costly and 

persistent ineffective cycle of phosphorylation and dephosphorylation of 

PKA and CaN at these sites [80]. 

 

AKAP79/150 can regulate the phosphorylation and dephosphorylation 

of various ionotropic receptors by anchoring PKA, PKC, and CaN in the 

postsynaptic membrane [24, 39, 43, 81, 82], thereby affecting the 

activity and transport of ion channels. In the basal state, AKAP79/150 

bound to a pool of largely inactive CaN in synapses. During NMDAR-

dependent long-term depression (LTD), AKAP79/150 binds to PSD-95, 

causing the release of CaN, which helps to NMDAR-triggered an 

enhancement of synaptic AMPAR endocytosis [83, 84]. In addition, 

AKAP79/150-anchored PKA and CaN can control the recruitment or 

removal of Ca2+-permeable AMPA-type glutamate receptors at 

hippocampus synapses by regulating GluA1 serine845 (S845) 

phosphorylation during long-term potentiation (LTP) / LTD, playing key 

antagonistic roles [83, 85-89].  

 

Indeed, L-type Ca2+ channels and AMPA/kainate receptors are 

modulated by  KA [35, 90, 91], while NMDARs are phosphorylated by 

PKC [92, 93] and dephosphorylated by CaN [94-96]. PKA-mediated 

phosphorylation of GluA1 serine 845 (S845) has been shown to promote 

GluA1 cell-surface targeting and synaptic retention, increase channel 

open-probability, and facilitate the induction of LTP through AKAP5 

[97-103], while dephosphorylation of GluA1 S845 is associated with 

endocytosis and LTD [98, 100, 102, 104-107]. CaMKII/PKC-mediated 

phosphorylation of GluA1 serine 831 (S831) increases channel 

conductance and regulates LTP [100, 104, 108-111]. Finally, PKC-

mediated phosphorylation of GluA2 serine 880 (S880) disrupts the 

interaction between GluA2 and GRIP, allowing for AMPAR endocytosis 

and LTD [47, 112, 113]. 

 

2.4. Distribution of AKAP79/150 

 

AKAP79/150 is widely distributed in the nervous system. In the 

peripheral nervous system, AKAP150 is mainly expressed in sensory 

neurons of dorsal root ganglion (DRG) [25, 114], and locates in the 

plasma membrane of the soma, axon initiation segment, and small fibers. 

Most of these neurons are nociceptive afferent C fibers and a small 

portion is Aδ-fibers [115]. In the central nervous system, AKAP5 is 

detected in an increasing number of tissues and cells. AKAP5 is widely 

distributed in the brain [116-122], heart [123], arterial smooth muscle 

[124, 125], pancreas [122], liver [116, 122], skeletal muscle [122], uterus 

[126], stomach [127], parotid [128, 129], diploid fibroblasts [130],  

amnion fibroblasts [131], T cells [132], red nucleus [133], Purkinje cells, 

olfactory bulb neurons, basal ganglia, and cortical actin cells [134]. 

Intriguingly, studies have found striking differences in AKAP150 

between brain regions in mouse [135]. Among them, striatum and 

cerebral cortex had the highest expression levels, followed by 

hippocampus and olfactory bulb, while cerebellum, hypothalamus, and 

brain stem had low expression levels [135]. 

 

2.5. Post-Translational Modification of AKAP79/150 

 

Before proteins become biologically active, they undergo a series of 

complex modification processes such as phosphorylation, glycosylation, 

ubiquitination, and lipidation. Protein palmitoylation is the most 

common and only reversible post-translational lipid modification, 

usually refers to the covalent binding of 16-carbon palmitic acid to the 

side chain of protein specific cysteine residues (Cys) via a labile thioester 
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bond, which is of great significance for protein trafficking, localization 

in cells and function [136-138].  

 

Protein palmitoylation is achieved by palmitoyl transfer mediated by 

protein acyltransferase, and its activity is mainly mediated by the 

structure of DHHC (Asp-His-His-Cys) [139, 140]. These enzymes are 

distributed in different tissues, mainly located in Golgi apparatus, 

endoplasmic reticulum or plasma membrane [141]. Currently, 23 DHHC 

enzymes have been reported, which play an important role in neuronal 

development and synaptic plasticity [142].  

 

Of note, ZDHHC2 is a member of the important DHHC family in 

neuroendocrine cells [143], which can mediate palmitoylation of PSD-

95 and AKAP79/150, impacting synaptic targeting of AMPARs [144, 

145]. Studies have shown that ZDHHC2 can catalyze the S-

palmitoylation of two conserved cysteine residues (Cys36 and Cys129) 

within the A and C basic regions of AKAP79/150 [146]. Although this 

modification is not important for the localization of AKAP79/150 in the 

plasma membrane and the connection with F-actin, it is required for the 

localization of AKAP79/150 to the recycling endosomes, and is closely 

associated with its localization to cholesterol rich, anti-detergents lipid 

rafts [141, 147, 148]. Additionally, it is worth noting that PSD is an 

important structure for anti-detergents and therefore palmitoylation of 

many PSD proteins is closely related to their synaptic localization [50]. 

  

One recent study showed that the palmitoylation of AKAP79/150 

modulates its postsynaptic nanoscale organization, trafficking, and 

mobility in hippocampal neurons [149]. In cultured hippocampal 

neurons, researchers have observed that the palmitoylation of 

AKAP79/150 is bidirectionally regulated by synaptic activity, thereby 

coordinating receptor exocytosis, synaptic spine morphological changes, 

GluA1 membrane surface expression and AMPAR synaptic activity 

closely related to LTP and LTD [50, 149]. The literature reported that 

CP-AMPARs containing GluA1 and lacking GluA2 play an important 

role in the formation of LTP. Palmitoylation of AKAP79/150 not only 

regulates synaptic transmission of CP-AMPARs under normal 

conditions, but also is critical for Ca2+-permeable AMPA-type glutamate 

receptors -dependent LTP [26, 50, 150]. 

 

On the other hand, protein depalmitoylation is the process by which 

palmitic acid is removed from modified proteins and contributes. 

Similarly, protein depalmitoylation also serves as particularly crucial 

regulators of protein function in neurons. The research shows that 

CaMKII-mediated autonomous phosphorylation and depalmitoylation 

are required for the synaptic removal of AKAP79/150 accompanied by 

the shrinkage of the volume of dendritic spines after the induction of 

LTD [151, 152]. In addition, synaptic removal of AKAP79/150 can 

prevent PKA-mediated re-phosphorylation of AMPAR, promoting 

endocytosis of AMPAR, which weakens the strength of the synapse 

[151]. Of note, the fully phosphorylated AKAP79 mutant showed a 

significant decrease in palmitoylation levels compared with the partially 

phosphorylated mutations [151].  

 

3. Potential Role of Akap79/150 in Human Disorders 

 

So far, many studies have shown that the dysfunction of AKAP79/150 

expression plays an important regulatory role in a variety of neural 

physiological activities, especially in some major neuropsychiatric 

diseases.  

 

3.1. Inflammatory Pain 

3.1.1. Inflammatory Pain Overview 

 

Inflammatory pain is a severe chronic pain that is caused by 

inflammation caused by trauma, bacterial and viral infections, and 

surgical procedures. Allodynia, hyperalgesia and sensitization are its 

main clinical manifestations [153]. Injury or inflammation leads to the 

release of inflammatory mediators such as bradykinin, prostaglandin E2 

(PGE2), L-glutamate and nerve growth factor (NGF), which activate 

“pain-” sensing neurons, increase nociceptor responsiveness and lower 

the threshold for pain [154-157]. 

  

Inflammatory pain not only severely affects the quality of life, but also 

increases the incidence of mental diseases [158]. Therefore, it is of great 

significance to further study its pathogenesis and develop corresponding 

analgesic drugs in clinical treatment. Of note, some important 

discoveries in this field in recent years are closely related to the 

AKAP79/150. 

 

3.1.2. Potential Mechanism of AKAP79/150 in Inflammatory 

Pain 

 

The nociceptive transduction molecule TRPV1 is the best-studied TRP 

channel, which plays a crucial role in hyperalgesia [159]. Activation of 

PKA or PKCε by inflammatory mediators phosphorylates TRPV1 and 

increases the sensitivity of channel gating, depending not only on the 

ability of the associated these kinases to bind AKAP79/150, but also on 

the ability of AKAP79/150 to bind TRPV1 [59, 160]. 

 

Previous studies have demonstrated that AKAP150-anchored PKA and 

PKC control the phosphorylation and functional status of TRPV1 [161, 

162], but the scaffolding protein is not involved in PP2B-driven channel 

desensitization [76]. Although both AKAP150 and the PKA regulatory 

subunit PKA RIIα are associated with TRPV1, the association between 

PKA and TRPV1 is mediated by AKAP150. Disruption of PKA binding 

to AKAP150 strongly attenuated the reduction of TRPV1 desensitization 

and hyperalgesia induced by PGE2 [163]. 

 

Blocking binding or removing AKAP79/150 inhibits the sensitization of 

TRPV1 [59]. The siRNA against AKAP150 effectively blocked the 

NMDA-induced phosphorylation of S800 of TRPV1 in trigeminal 

ganglia [164]. In addition, phosphorylation of the S502 site on TRPV1 

as the main mechanism by which AKAP79 mediates translocation of 

TRPV1 to the membrane [59]. A 14 aa domain, corresponding to 

residues 736–749 mediating AKAP79 binding was found in the C-

terminal domain of TRPV1 [59]. In fact, critical residues within this 

binding site, namely D738, R740, C742, and V745 have been identified 

[165]. If binding is blocked, the sensitization effect was abrogated. 736–

745-TAT (a membrane-permeable decoy peptide) attenuated the thermal 

hyperalgesia induced by Formalin was attenuated, as well as the 

mechanical hyperalgesia induced by Group I metabotropic glutamate 

receptors (mGluR1/5) agonist (DHPG) [165, 166]. In turn, amino acids 

326–336 on AKAP79 responsible for its interaction with TRPV1. the 
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binding site of TRPV1 on AKAP79 a sequence of 11 aa, 326–336 in the 

C-terminal. The sensitization of TRPV1 by PKC and PKA in vitro and 

inflammatory hyperalgesia in vivo were reduced by using a peptide 

mimicking the 326–336 site on AKAP79 [167]. Thus, antagonizing the 

interaction between AKAP79 and TRPV1 may offer a promising 

analgesic strategy. 

 

As mentioned earlier, L-glutamate mediate hyperalgesia. mGlu1/5 

couple activation of phospholipase C (PLC), resulting in release of 

AKAP150 from cell membrane of the PIP2-rich region can associate with 

target substrate proteins, including TRPV1 [168]. There was a twofold 

increase in AKAP association with TRPV1 following DHPG treatment 

[169]. AKAP5 KO mice with inflammation did not facilitate DHPG-

induced pain behavior and the proportion of S800-phosphorylated 

TRPV1 was significantly reduced in DRG neurons from AKAP5 KO 

mice after NGF treatment [25]. Moreover, a functional transcriptional 

link has been observed between serum response factor (SRF) and 

AKAP150. DHPG-stimulated upregulation of AKAP150 was blocked 

pretreated with SRF siRNA ([170]. 

  

AKAP150 trafficking and synaptic localization is modulated by 

palmitoylation [26]. A recent study showed that AKAP150 translocated 

from cytoplasmic to synaptic site after intraplantar injection of complete 

freund’s adjuvant (CFA). The palmitoylation levels of AKAP150 were 

significantly increased, and mediated the accumulation and 

phosphorylation of GluA1. Inhibition of AKAP150 palmitoylation 

through intrathecal injection palmitoylation-deficient AKAP150 mutant 

vectors, AKAP150 (C36, 123S) or ZDHHC 2-siRNA or 2-

bromopalmitate (2-BP) could relieved inflammatory pain [171]. 

 

Noxious thermal, mechanical, or chemical stimuli lead to depolarization 

of nociceptive sensory neurons, triggering a series of events such as 

calcium influx, Ca2+/CaM–dependent activation of ACs, and 

intracellular cAMP production [172-174]. AKAP79/150-anchored AC is 

vital for the sensitization of TRPV1 to cAMP/PKA-dependent regulation 

[175]. Furthermore, AC5/6 interaction with AKAP150 is necessary for 

persistent nociceptor spontaneous activity [114]. Genetic deletion of 

AC1 prevented the translocation of AKAP79/150 and PKA, as well as 

upregulation of synaptic GluA1-containing AMPARs in the insular 

cortex after nerve injury [176].  

 

AKAP79/150 anchoring of kinases and phosphatase control ion channels 

response to activation signals [177]. There are 63.0%, 57.6%, and 11.8% 

of APAP150-positive neurons were co-expressed with CaV1.2, voltage 

gated sodium channel, and Kv1.2 in rat DRG neurons, respectively. 

Studies in small nociceptive DRG neurons demonstrated that AKAP150 

interacts with TRPV1 and CaV1.2 in the soma and axon initial segment 

[115]. Depolarization of sensory neurons rapidly activates PKA type II 

(PKA-II) in nociceptors by Ca2+ influx through CaV1.2 channels [178]. 

BAPTA-AM-driven chelation of intracellular Ca2+ not only increased 

PKA-mediated sensitization of TRPV1, but also increase the association 

of AKAP150 with TRPV1 [179]. CaM serves as a part of a calcium-

sensitive complex was able to bind to C terminus 35-aa segment of 

TRPV1 and effectively prohibits AKAP150 from associating with 

TRPV1 [179, 180]. Another low voltage-gated (T-type) Ca2+ channels 

isoform, CaV3.2 was found to be able to immunoprecipitated with 

AKAP150. The increased phosphorylation of Ser/Thr residues in CaV3.2 

induced by dibutyryl cAMP can be reversed by AKAP St-Ht31 

inhibitory peptide ([181]. 

 

Like TRPV1, TRPV4 was shown an interaction with AKAP79 by co-

immunoprecipitation in small nociceptive sensory neurons [59]. 

Previous study has demonstrated that AKAP79 plays a critical role in 

tethering PKA and PKC to TRPV4 to modulate its gating [182]. 

Modulating TRPV4 function using peptide antagonists targeting the 

interaction between TRPV4 and AKAP79 is considered to be an 

effective therapeutic strategy [183]. 

 

AKAP150 is also involved in chemotherapy-induced neuropathic pain 

(CINP). Knocked down AKAP150 by intrathecal injection of AKAP150 

siRNA or AAV5-Cre-GFP virus significantly alleviated paclitaxel-

induced hypersensitivity, and partially restored CaN phosphatase 

activity and IL-4 expression [184]. In addition, AKAP150 mediates the 

sensitization of transient receptor potential anchor protein 1 (TRPA1) 

regulated carboplatin-induced mechanical allodynia and cold 

hyperalgesia [185]. These findings indicate that AKAP150 plays an 

important role in the neuropathic pain (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Schematic diagram of the role of AKAP79/150 in inflammatory pain. Under inflammatory conditions, endogenous glutamate is released, 

promoting the stimulation of mGluR1/5 by DHPG. TRPV1-mediated inward current via the PLC-DAG pathway to directly excite the nociceptive neurons, 

and PIP2 is degraded, leading to the release of AKAP79/150 from the plasma membrane anchor site and subsequent binding to TRPV1, increasing the 

sensitization of AKAP79/150 anchored PKA and PKC to TRPV1 and in vivo inflammatory hyperalgesia. On the other hand, Inflammatory pain increases 

the mediated palmitoylation levels of AKAP150 mediated by ZDHHC2, which maintains the synaptic location of AKAP150 and induces pain in mice. With 

the redistribution of AKAP150, the phosphorylation of GluA1 at serine 845 mediated by AKAP150-PKA and GluA1 at serine 831 mediated by AKAP150-

PKC raises. 
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3.2. Epilepsy 

3.2.1. Epilepsy Overview 

 

Epilepsy is a common chronic neurological disease characterized by 

epilepsy, which is caused by overexcitation and synchronous abnormal 

discharge of brain neurons. The formation of neuronal network is closely 

related to synaptic transmission. When the synaptic transmission 

function is abnormal, the equilibrium between excitation and inhibition 

of the neural network is destroyed, which induces abnormal firing of 

neurons and finally leads to seizures [186]. Despite more than 40 kinds 

of antiseizure drugs have been used in clinic in recent years, about one-

third of patients are still unable to effectively control epileptic seizures 

[187].  

 

The etiology of epilepsy is complex and diverse, involving structural, 

genetic, metabolic, infectious, or immune factors [188]. The abnormal 

firing of neurons is found to be closely related to dysfunction of the 

mitochondrion and abnormalities of neurotransmitters and ion channels 

[189-191]. When neurons in the brain discharge abnormally, motor, 

sensory, cognitive, psychic and autonomic nervous functions will be 

impaired [192]. Intriguingly, studies have found that AKAP79/150 may 

play an important role in the onset and development of epilepsy. 

 

3.2.2. Potential Mechanisms of AKAP79/150 in the Development 

of Epilepsy 

 

It was previously shown that AKAP150 knockout mice show learning 

disabilities and are resistant to seizure after peritoneal injection of 

pilocarpine (300 mg/kg) [193]. In particular, kainic acid (KA)-induced 

seizures have been demonstrated to increase palmitoylation of 

AKAP150, thereby promoting movement to postsynaptic lipid rafts [26]. 

Hence, AKAP150 may have a significant role in the pathogenesis of 

epilepsy. 

 

On the one hand, the KCNQ2/3 mutation, which leads to a mild decrease 

of M-channel activity, is associated with the onset of benign neonatal 

epilepsy. These mutations can reduce the excessive excitability 

responsible for epileptic seizures [194]. The palmitoylation of 

AKAP79/150 has been proved to be critical to its mediated regulation of 

KCNQ2 both in vivo and in vitro experiments, and M-current 

suppression is involved in the pathophysiology of seizures [27]. Seizures 

activate Gq-coupled receptors, and Kv7.2 subunit is phosphorylated by 

AKAP79/150-anchored PKC. Phosphorylated Kv7.2 subunits release 

calmodulin (CaM), thereby reducing the binding of PIP2 to Kv7.2 

subunit. Suppressed M-current reduces channel functionality, ultimately 

leading to neuronal hyperexcitability [193, 195-199]. Due to the 

palmitoylation modification of AKAP79/150 being necessary for 

phosphorylation of Kv7.2 subunit by AKAP79/150-anchored PKC, the 

anticonvulsant effect of valproic acid is achieved by interfering with the 

palmitoylation of AKAP79/150 to prevent the M-current from 

suppressive neurotransmitters during seizures, thereby preventing the 

progression of seizures [27, 199].  

 

On the other hand, AKAP79/150 regulates the transcriptional expression 

of KCNQ2/3 by coordinating L-type voltage-gated Ca2+ channels to limit 

the overexcitation of the nervous system [24]. After induction of seizures 

by pilocarpine and KA, the opening of CaV1.3 channels produces an 

elevated local Ca2+
i signals, activating AKAP79/150-anchored CaN 

associated with CaV1.3 channels. NFAT is then dephosphorylated and 

activated by Ca2+-CaM/CaN, causing NFAT to translocate from the 

cytoplasm to the nucleus, acting on the KCNQ2/3 gene regulatory 

elements and upregulating M-current. The increased expression of 

KCNQ2/3 channels serves as a negative-feedback loop to suppresses the 

increase in neuronal excitability [24,200].  

 

The above findings suggest a crucial role of AKAP79/150 and its 

palmitoylation in the pathophysiology of epilepsy (Figure 3). However, 

extensive research is needed to clarify the potential molecular 

mechanisms of AKAP79/150 in the development of epilepsy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3: Potential mechanism of AKAP79/150 in epilepsy. After seizures, the opening of L/CaV1.3 channels produces an elevated local Ca2+
i signals, 

activating AKAP79/150-anchored CaN associated with L-type (CaV1.3) Ca2+ channels. NFAT is then dephosphorylated and activated by Ca2+-CaM/CaN, 

causing NFAT to translocate from the cytoplasm to the nucleus, acting on the KCNQ2/3 gene regulatory elements and upregulating M-current. On the other 

hand, seizures activate Gq-coupled receptors, and Kv7.2 subunit is phosphorylated by AKAP79/150-anchored PKC, which is mediated by palmitoylation 
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of AKAP79/150. Phosphorylated Kv7.2 subunits release CaM, thereby reducing the binding of PIP2 to Kv7.2 subunit. Suppressed M-current reduces channel 

functionality, ultimately leading to neuronal hyperexcitability. 

 

3.3. Depression 

3.3.1. Depression Overview 

 

Depression is a common mental disorder characterized by persistent low 

mood, intellectual disability, cognitive impairment, volitional decline, 

and impaired social function, affecting more than 300 million worldwide 

[201, 202]. The etiological hypotheses of depression include the 

monoamine neurotransmitter hypothesis, the hypothalamic pituitary 

adrenal axis dysfunction hypothesis, the neural plasticity and 

neurotrophic factor hypothesis, the inflammation and cytokine 

hypothesis, and the intestinal flora imbalance hypothesis [203-208]. In 

the past decades, however, the pathogenesis of depression still remains 

poorly understood, and currently there is no cure for depression. 

Impressively, the role of AKAP79/150 in the development of depression 

advances our understanding of this disease. 

 

3.3.2 Potential Mechanisms of AKAP79/150 in Depression 

 

The synaptic dysfunction has been extensively studied in patients with 

depression and in animal models [209-211]. The glutamate-mediated 

excessive activation of extra synaptic NMDAR has been found to be 

closely related to animal behaviors such as decreased food intake, weight 

loss, loss of pleasure, cognitive impairment, and social disorder, which 

are also common clinical manifestations of patients with depression 

[212-216].  

 

A study identified AKAP5 copy-number increases using DNA copy-

number analysis from the human brain DNA samples of post-mortem 

bipolar disorder and schizophrenia patients [217, 218]. Of interest, the 

numerical density of AKAP5-expressing neurons was significantly 

increased in the left and right anterior cingulate cortex of patients with 

bipolar disorder [219]. The DNA copy variants in eight AKAP5 were 

also found in individuals with autism spectrum disorders [220].  

 

Another study found that aberrant expression of Akap5 is found in 

amygdala after unpredictable chronic mild stress-induced depression-

like behavior in rats, and antidepressants could reverse the expression of 

Akap5 [221]. Furthermore, a recent study shows that both chronic 

restraint stress and unpredictable chronic mild stress increase the 

expression of AKAP150 and induce its redistribution into the synapses 

in the basolateral amygdala of depressive mice [222]. As a AKAP79/150 

anchoring kinase in SH-SY5Y neurons, PKA is recruited to the synaptic 

compartment, facilitating the phosphorylation of GluA1 Ser845 site and 

the insertion of GluA1-containing AMPARs into the neuronal 

postsynaptic membrane [49, 222, 223]. AMPAR transported to the 

postsynaptic membrane is located on the PSD-95 scaffold and mediated 

glutamatergic synaptic transmission contributes to depressive-like 

behaviors [222, 224]. Interestingly, studies have found that curcumin, a 

multitarget drug with antidepressant effect, can protect neurons from 

glutamate insult by reducing Ca2+ influx induced by NMDAR and 

blocking the translocation of AKAP79 from cytomembrane to 

cytoplasm. At the same time, curcumin facilitates the phosphorylation of 

AMPAR and its downstream signal transmission from MEK1/2 to 

ERK1/2 in PKA dependent manner [223]. These findings reveal insight 

into the pathophysiology of depression and provide a novel target for the 

development of antidepressants (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: AKAP150-mediated synaptic dysfunction in chronic restraint stress and unpredictable chronic mild stress-induced depressive-like behaviors. 

Both chronic restraint stress and unpredictable chronic mild stress increase Ca2+ influx induced by NMDAR and the translocation of AKAP79 from 

cytomembrane to cytoplasm, and facilitate the phosphorylation GluA1Ser845 site of AMPAR and its downstream signal transmission from MEK1/2 to 

ERK1/2 in PKA dependent manner, thus improving the transmission of excitatory synapse in basolateral amygdala of mice and inducing depressive behavior. 
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3.4. Diabetes 

 

Interestingly, more recently has found that the adipocyte hormone leptin 

could not promote KATP channel trafficking and membrane 

hyperpolarization in human β-cells from obese type II diabetic donors 

and β-cells from obese diabetic db/db mice lacking functional leptin 

receptors; however, leptin activates Src kinase, and AKAP79/150 

anchors and activates PKA after Src kinase activation, initiating 

NMDAR-CaMKKβ-AMPK signaling cascades and reactivates the 

action of leptin. PKA-dependent actin remodeling promotes KATP 

channel trafficking and increase in K+ conductance, causing β-Cells 

hyperpolarization and inhibit glucose stimulated insulin secretion [37]. 

Noteworthy, studies have found that insulin secretion can be regulated 

by the reversible phosphorylation of β cell proteins through the 

AKAP79/150 targeting of PKA and PP2B [37, 122, 225]. In addition, 

studies have found that separately selective down-regulation of KV2.1 

and large conductance Ca2+-activated K+ channel by activating 

AKAP150-CaN dependent NFATc3 signaling and the β1 subunit of the 

large conductance Ca2+-activated K+ channel in vascular smooth muscle 

cells can enhance arterial tone during diabetes [226-228].  

 

In another study of diabetic hyperglycemia, it was found that when the 

extracellular glucose level increased, P2Y11 receptor activated, 

promoting AC5 activity and local cAMP production. This cAMP 

microdomain can enable AKAP5 to recruit PKA that is intimately 

associated with L-type CaV1.2 channels to increase their phosphorylation 

at serine 1928 (S1928), which will potentiate channel activity [229, 230]. 

Intriguingly, the selective P2Y11 agonist NF546 increases cAMP levels 

and CaV1.2 channel activity in human and mouse vascular smooth 

muscle cells, thus exerting a similar effect as increasing glucose. 

Counterintuitively, genetic ablation of AKAP5 (AKAP5-/-) inhibited the 

increase in cAMP and CaV1.2 channel activity induced by elevated 

glucose and the NF546. In addition, AKAP5-/- can completely abrogated 

the association of P2Y11 receptors with PKA and the CaV1.2 α1C subunit, 

as well as the CaV1.2 α1C subunit with AC5 and PKA with AC5 in 

vascular smooth muscle cells. Altogether, the results suggested the 

AKAP5/P2Y11/AC5/PKA/CaV1.2 signaling complex may be targeted 

for the treat diabetic vascular complications [231, 232]. 

 

3.5. Cardiovascular Disorders 

 

AKAP79/150 plays an important role in heart function mainly by 

regulating the calcium ion changes in the heart, myocardial hypertrophy, 

and heart failure. On one hand, previous study found that Akap5-

knockout mice have significant cardiac hypertrophy, and carvedilol can 

reverse cardiac hypertrophy and cardiac insufficiency in Akap5 gene 

knockout mice by regulating the activity of CaN and CaMKII [28, 233]. 

It is worth noting that recent studies have found that Selective β1-

adrenergic receptor blocker metoprolol reduces ischemic cardiac 

remodeling and fibrosis by improving cardiac AKAP5 expression and 

AKAP5-PP2B interaction [234]. Studies have shown that chronic 

activation of CaN is associated with cardiac hypertrophy and a secondary 

enhancement of intracellular Ca2+ treatment that is tied to the 

hypertrophy response itself, while targeted inhibition of CaN alleviates 

cardiac hypertrophy in vivo [235-239]. In addition, AKAP79/150 

regulates β-adrenergic receptor signaling, trafficking, and recycling by 

anchoring to PKA or CaN exert cardioprotective effects [240, 241]. 

Interestingly, a recent study suggests that AKAP5 may anchor CaN to 

regulate NFATc3 remodeling in H9c2 cardiomyocytes exposed to 

hypoxia and reoxygenation after ischemia-reperfusion injury [242]. 

Furthermore, AKAP150-anchored CaN acute activation transcription 

factor NFATc3 mediates voltage gated K+ currents downregulation in 

ventricular myocytes following myocardial infarction, increasing the 

probability of arrhythmias [243]. On the other hand, by anchoring and 

activating conventional PKCs, AKAP150 promotes the activation of NF-

κB, and mediates the toxic cardiac effects of hyperglycemia [244, 245].  

 

3.6. Alzheimer’s Disease 

 

Previous studies have shown that AKAP79 is highly expressed in 

cortical regions and hippocampal subregions that are susceptible to the 

development of neurofibrillary pathology in alzheimer’s disease [42, 

117, 246]. In addition, the activity of CaN, which binds and localizes 

with AKAP79, decreases in alzheimer’s disease [42, 246]. Interestingly, 

dysregulation of subcellular localization of PKA-Cβ, PKA-RIIβ, and 

AKAP79 exist in alzheimer’s disease, which may allow for the specific 

targeting of tau protein by activated PKA after elevations in cAMP 

levels. Hyper-phosphorylation of the tau protein can form neurofibrillary 

tangles in the brain of alzheimer’s disease patients [247, 248]. It has been 

reported that AKAP150 may coordinates PKA and CaN regulation of 

CP-AMPARs to mediate disruption of hippocampal neuronal plasticity 

and LTP/LTD balance by Aβ oligomers in Alzheimer’s disease, thus 

impairing learning and memory [150, 249].  

 

3.7. Hypertension  

 

Research has found that when the angiotensin II signal is elevated, 

activation activates Gq coupled receptors, increasing cytosolic DAG and 

IP3 levels. DAG activates PKC and CaN anchored by AKAP150. When 

PKC is activated, it can phosphorylate nearby TRPV4 and CaV1.2 

channels, increasing the probability of their opening. The opening of the 

TRPV4 channel develop stuttering persistent Ca2+ sparklets signals in 

arterial myocytes that regulate Ca2+ influx and NFATc3-dependent gene 

expression in smooth muscle. This increases arterial [Ca2+]i and 

myogenic tension, ultimately leading to hypertension [124, 125, 250-

255].  

 

3.8. Cancer 

 

Recently, an analysis using chi-square and Fisher exact test found that 

AKAP5 expression was decreased in non-mucin producing stomach 

adenocarcinoma based on the cancer genome atlas data [256]. In 

addition, using GSEA to analyze the cancer genome atlas dataset, it was 

found that gene sets related to cholesterol homeostasis, glycolysis, 

estrogen response late, adipogenesis, estrogen response early, notch 

signaling, and peroxisome were differentially enriched with the low 

AKAP5 expression phenotype. It suggested that these may be the key 

pathways regulated by AKAP5 in non-mucin producing stomach 

adenocarcinoma [256]. 

 

Moreover, it was found that the nonsynonymous coding mutations of 

AKAP5 was enriched in the metastatic tumor of primary breast cancers 

with paired metastatic lesions by exome sequencing. Interestingly, 

further exploration using the cancer genome atlas dataset found that 
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AKAP5 was expressed at lower levels in the subtypes (basal-like and 

HER2-enriched) of breast cancer with highest risk of recurrence. 

Accordingly, low expression of AKAP5 is more likely to recurrence and 

metastasis in breast cancer [257]. 

 

4. Conclusion 

 

A growing body of evidence has suggested the crucial role of 

AKAP79/150 in the pathophysiological conditions of some human 

disorders. Notably, increased AKAP150 expression is closely associated 

with the pathogenesis of depression. Pharmacological targeting of 

AKAP150 expression has shown great promise for the depression 

treatment. In addition, alterations of AKAP150 expression also exist in 

patients with epilepsy or epileptic animal models, neuropathic pain, or 

schizophrenia. These lines of evidence highlight the important roles of 

AKAP79/150 in the progression of these disorders, and render 

AKAP79/150 as a valuable therapeutic target. Together, the 

contributions of the AKAP79/150 in regulating disruptions of the 

synaptic circuits is critical for our understanding of the pathophysiology 

of some diseases and attempts for development of novel treatments. We 

envision that the future advances into the molecular mechanisms of 

AKAP79/150 deregulation and its involvement in the pathogenesis of 

those disorders can be a key in developing new promising treatment 

strategies. 
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