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A B S T R A C T 

The causes of the alterations found in the brains of patients with alzheimer's disease (AD) begin before the 

first signs of memory loss appear, and are still unclear. Adequate research models are essential to understand 

the mechanisms that cause the onset of these alterations, as well as to advance in the diagnosis, development 

and testing of treatments for the AD. Animal research models fail to recreate the great diversity and 

complexity inherent to the human brain, so in vitro systems based on human pluripotent stem cells (hPSCs) 

present themselves as an important alternative. Differentiation of hPSCs into two-dimensional (2D) cell 

culture models allows recreation of various brain functional processes and the three-dimensional (3D) cell 

culture models or human brain organoids (hCOs) recapitulate the cellular diversity and structure of the 

human brain. hCOs from human induced pluripotent stem cells (hiPSCs) from patients with familial (APP, 

PSEN1 and PSEN2 mutations) or sporadic AD allow identifying and studying changes due to this pathology. 

This review presents an overview of the research models used to study the AD, and recapitulates the 

advantages and discusses the challenges of the hCOs as an innovative and promising technology that will 

aid in the understanding of AD. 

                                             © 2023 Isabel Liste & Victoria López. Published by Progress in Neurobiology 

1. Introduction 

 

Alzheimer's disease (AD) is the principal cause of dementia in the 

elderly population and one of the leading causes of death worldwide [1-

4]. The AD incidence is expected to increase dramatically by 2050 

mainly due to the rise in life expectancy of the world population [5, 6]. 

Moreover, AD is a disabling disorder, and the maintenance of the 

patients reaches a high cost for families and society, which makes AD a 

problem for public health [6, 7]. In the last decades, great advances have 

been made in the field of AD, but the main causes that trigger AD and 

its etiology are still unclear. 

 

The neurodegenerative process of AD appears in adults and older people, 

beginning with some progressive memory impairments that involve 

alteration of cognitive processes, self-awareness and memory loss. In 

later stages, AD patients also manifest aphasia, amnesia, agnosia and 

apraxia [8-11]. The neurological changes are accompanied of two main 

histopathological features observed in the post-mortem brains of AD 

patients: the abnormal intracellular hyperphosphorylation of Tau protein 

(p-Tau) and the presence of extracellular amyloid plaques formed by 

accumulation of the long variants of β-amyloid (Aβ) peptide. On the one 

hand, p-Tau protein would lead to the formation of aggregates or 

neurofibrillary tangles (NFTs) inside the cells that would cause failures 

in the normal functioning of the neurons. By the other hand, Aβ peptide 

first would appear extracellularly as monomers that would associate with 

each other, forming oligomers and finally their aggregation would give 

rise to senile plaques (Figure 1) [8, 11-13]. Recent studies indicate an 

interrelation between both alterations found in AD [14, 15]. 

https://pneurobio.com/
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FIGURE 1: Schematic representation of the major physiological and cellular perturbations found in a brain with alzheimer's disease (AD) in comparison to 

a healthy brain.  

In the brain with AD (right) in comparison to a normal brain (left) the main physiological changes found are: presence of Aβ fibers and plaques, NFTs of p-

Tau, damage of the myelin sheath, disintegration and reduction of dendrites in neurons, activation of microglia and presence of reactive astrocytes. The 

presence of Aβ plaques and NFTs in the neuron with AD is shown in the upper right of the figure together with the schema of amyloidogenic pathway of 

amyloid precursor protein (APP) (β-secretase pathway) and the genes that encode the catalytic subunit of γ-secretase, PSEN1 (presenilin-1) and PSEN2 

(presenilin-2) implicated in the development of familial AD. 

 

Both events (NFTs of p-Tau and senile plaques of Aβ peptide) appear in 

patients with sporadic AD (sAD) and familial AD (fAD). At least 90% 

of all cases of AD are sporadic and occurs in patients with more than 65 

years. It is associated with aging, the allelic composition of 

apolipoprotein E (APOE), failures in the correct functioning of microglia 

and brain metabolism [16-19]. The prevalence of fAD is less than 10% 

of the AD cases and appears in patients with ages younger than 65 years. 

It is due to autosomal dominant mutations on the gen of the amyloid 

precursor protein (APP, located on chromosome 21) and mutations on 

genes of Presenilins 1 and 2 (PSEN1 and PSEN2, located on 

chromosome 14 and chromosome 1, respectively). It should be noted 

that APP is the precursor protein of Aβ peptides (Aβ40 and Aβ42) and 

Presenilins 1 and 2 are part of the γ-secretase catalytic complex, one of 

the enzymes that cleaves APP during its proteolytic processing. It is 

important to highlight that most of the mutations described for APP, 

PSEN1 and PSEN2 genes favor production and accumulation of Aβ 

peptide in the brain parenchyma of AD patients [11, 20]. 

 

Probably because the pathogenic mechanisms that cause AD have not 

yet been determined currently, there is no effective cure for this disease. 

In recent decades, only a few drugs have been approved for the palliative 

treatment of AD, such as inhibitors of acetylcholinesterase (donepezil, 

galantamine or rivastigmine) or antagonists of N-methyl-D-aspartate 

receptor (memantine) [21-23]. More recently, the FDA has approved a 

controversial new treatment, aducanumab (Aduhelm™), an anti-Aβ 

peptide monoclonal antibody, hoping to reduce their accumulation in 
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brains of AD patients [24, 25]. However, none of these pharmacological 

treatments is capable of stopping the neurodegenerative process in AD. 

 

Because the causes of this disease are still not well understood, many 

efforts are being carried out to know the origin, development and 

evolution of AD. One of the reasons why the causes of the disease are 

still not well known is the absence of good study models that allow 

replicating this disease. Animal models with human mutations (in APP, 

PSEN1 or PSEN2 genes) have been used to approach the study of AD. 

Nevertheless, there are many differences regarding the development of 

the disease in humans [26-29]. Secondly, the technology of human stem 

cells has allowed progress in the knowledge of AD, especially the use of 

induced pluripotent stem cells (iPSCs) derived from AD patients [10, 30-

32]. However, the two-dimensional (2D) models have limitations, such 

as the lack of three-dimensional (3D) organization and cell diversity that 

make up the human brain [33, 34]. For this reason, the development and 

use of human cerebral organoids (hCOs) can be a good alternative to 

deepen and advance in the pathogenic mechanisms of AD.  

 

In this review, we present the milestones reached in relation to the study 

of AD with animal models and in vitro models. Finally, we will focus on 

the use of hCOs as a promising technology to study and model of both 

sAD and fAD. 

 

2. Animal Models of Alzheimer’s Disease (AD) 

 

Several animal species (Drosophila melanogaster, Caenorhabditis 

elegans, Danio rerio), but mainly mice, have been used during last 

decades to understand the pathology of AD [29]. Most of the studies 

have focused on APP mutations [27-29], although mutations in other 

genes have also been analyzed, like PSEN1, APOE or MAPT [29]. For 

studies at behavioral, phenotypical and morphological level, these 

models have been very useful; however, they have shown limitations in 

modelling AD. In fact, the failure rate with these models in drug 

discovery has been of 99% [26, 35]. In addition, they are not realistic 

enough because neurodegeneration, like neuronal loss or the 

development of NFTs, cannot be observed in their brains.  

 

Furthermore, there are important anatomical differences between brain 

morphology [29, 36-38] and physiology of the mouse and human brain, 

as the organization of ventricular zones. Animal models have a bias in 

the information they provide, since the genes that are modified only 

represent a minority of cases (fAD) and do not represent the totality of 

the pathology [22]. 

 

3. In vitro Models of Alzheimer Disease (AD) 

3.1. Stem Cells and Adherent Models (2D) 

 

Recent advances in the field of stem cells and new knowledge related to 

cell reprogramming have opened up a new world of opportunities and 

the creation of more reliable models for a better understanding of the 

etiological and molecular process of AD. During the last decades, the 

study and characteristics of stem cells has been deepened, as well as their 

possible therapeutic applications or as an alternative method to in vivo 

procedures [39, 40]. 

 

Stem cells are defined as cells with a high renewal potential and the 

capacity to differentiate into more specialized cell types [41]. There are 

four types of stem cells depending on how many different types of cells 

can be obtained from them: totipotent, pluripotent, multipotent and 

unipotent [42]. The most used in research are the multipotent (MSCs) 

and pluripotent stem cells (PSCs) [23, 37, 41]. MSCs can be derived 

from foetal, neonatal or adult tissues, but also from PSCs [42]. PSCs can 

be obtained from embryonic stem cells (ESCs) or by reprogramming 

somatic cells to induced pluripotent stem cells (iPSCs) [41]. 

 

The technique for creating iPSCs from fibroblasts was developed by 

Takahashi and Yamanaka, through a retroviral infection, that allowed 

the introduction of the factors Oct4, Sox2, Klf4 and c-Myc [40]. The 

same year, the group of Yu et al. also reported the reprogramming of 

human somatic cells to PSCs by the use of the Oct4, Nanog, Sox2 and 

Lin28 factors [43]. In recent years, much progress has been made in 

reprogramming techniques, to the point of obtaining safer and more 

efficient non-integrative methods [44-46].  

 

In 2011 were designed and used in research the first iPSCs derived from 

patients with fAD [47, 48], and a year later from patients with sAD [30]. 

In these studies the presence of PSEN1 mutations found in fAD patients 

were associated with accumulation of Aβ peptides due to alterations in 

the ubiquitin kinase system [49], γ-secretase activity [50], Tau 

proteostasis [51] and up-regulation of calcium-controlling receptors in 

the endoplasmic reticulum (ER) [52]. In the early stages of AD were also 

observed diverse alterations in astrocytes [53-55]. 

 

Studies with iPSCs from fAD patients with APP mutations found that 

some iPSCs are more prone than others are in accumulation and 

aggregation of Aβ peptides [56]. APP alterations were studied in relation 

to p-Tau levels [57], cholesterol receptors involved in endocytosis and 

clearance of Aβ [58], and mitochondrial dysregulation [59]. Because of 

these studies, new treatments have been proposed to reduce Aβ peptides 

such as the use of statins [60], or various chemicals to increase Tau 

autophagy [61]. Despite these studies, many of the functions of APP 

involved in the disease are still unknown [62]. Another approach to study 

AD is to use iPSCs from individuals with down syndrome (DS), who 

present in most cases with early-onset dementia similar to patients with 

fAD due to the triplication of chromosome 21, where APP is encoded 

[63-65]. Deletion in these models of the extra copy of APP reverses and 

normalizes the Aβ40/Aβ42 ratio [66].  

 

iPSCs from sAD patients has allowed the study of the APOE gene 

increasing the ratio of Aβ42 similar to what was observed in post-

mortem brains [67, 68]. Not all APOE gene isoforms are aggressive; the 

APOE2 is neuroprotective, whereas APOE4 is the most toxic [69]. 

Several studies have found APOE4 to be associated with 

proinflammatory profiles and increased TREM2 [70], and hPSC-derived 

astrocytes with APOE mutations are generated for drug screening [71]. 

Recently a link between the APOE4 and the SARS-CoV-2 infection has 

been established with increased neurodegeneration and synapse loss 

[72]. 

 

Other 14 genes with direct involvement in fAD have been described with 

these models [73]. In addition to the alterations described above, 

increased oxidative damage [74] leading to alterations in membrane 
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permeability [75] has been found. Microglia is also affected, due to 

failures in TREM2 [76], with an increase of microglial cells involved in 

the clearance of Aβ and Tau around Aβ accumulations in AD patients 

[77, 78]. For phagocytosis to be successful, support from mitochondria 

is required to mobilise all the proteins involved [79], although these also 

end up being affected by increased reciprocal Aβ42 and Tau deposition 

[80]. The degradation of Aβ, likewise, is mediated by insulin [81], so its 

accumulation induces insulin resistance, along with toxic and apoptotic 

reactions, increasing AD symptoms [82]. Oher studies focus in the 

regulation of miRNAs that could protect against AD symptoms, such as 

the miRNA124 [83].  

 

2D stem cell models have been a great advance in the study of 

neurodegenerative diseases. However, in relation to AD, there is a need 

to recreate the different stages in time and space, as well as some key 

events such as the aggregation of extracellular peptides. The appearance 

of the 3D models, which are now possible due to advances in stem cell 

technology and knowledge of iPSCs, are closer to simulate that occur in 

vivo and open the research for understanding AD [33, 34]. 

 

3.2. 3D Models: Human Cerebral Organoids  

 

In addition to 2D cultures, the ability to develop hCOs revolutionized the 

field and reduced the use of other techniques. Lancaster and 

collaborators [84] made the first hCO protocol, with the main goal of 

understand the development of the human brain. This first hCO protocol 

from human PSCs could recreate different brain regions capable of 

influencing each other. The protocols in which organoids generate 

various brain regions spontaneously are called unguided protocols [84-

86]. The authors defined organoids as 3D cultures with two or more cell 

types in an order and function similar to those that would be found in the 

organ [85]. Another simple definition can be a primitive organ that is 

obtained from a tissue sample using PSCs [87]. 

 

Currently, other type of protocols for the generation of hCOs exists. 

Guided protocols employ patterning factors that give rise to organoids 

of a specific brain region [88-95]. For example, cortical organoids have 

the possibility of combining them to achieve a better understanding of 

cell, synapse, and neuron interaction and astrocyte maturation in these 

complex structures. In addition, this type of protocols can be used 

without the need of support [89, 90]. Table 1 lists the main publications 

with hCOs to study AD. Moreover, the identity of hCOs with the human 

foetal cerebral cortex has been confirmed [96]. Other studies indicate 

that 45-day-old organoids have a large number of pathways and 

functions typical of neural tissue: metabolism, cell-cell adhesion, 

development of the cerebral cortex, organisation of the cytoskeleton, and 

others like the human brain at 16 weeks gestational age [32]. 

 

TABLE 1: Summary of the main publications with hCOs as research models to study AD, classified attending to the protocol employed to generate the hCOs 

(non-guided or guided) with mutations corresponding to familial AD (fAD), sporadic AD (sAD), or other type. 

Protocol aOrigin human cell 

line 

bMutations cAD Pathology dCell types Studies Refs 

fAD non-guided hCOs 

Lancaster, 

2013 

AD patient & 

DS 

Fibroblasts 

iPSCs 

PSEN1 (1) Aβ42/40 ratio 

Aβ Agg 

p-Tau 

Tau Agg 

Neurons 

Astrocytes 

In hCOs found elevated levels of Aβ, p-

Tau and cell death similar to those 

observed in AD and DS brains 

[111] 

Lancaster, 

2013 

(STEMdiff

™) 

AD patient  Dermal 

Biopsy 

iPSCs 

APP (2)                                            

PSEN1  

(3, 4) 

Aβ42/40 ratio Neurons Neuronal hyperactivity due to increased 

VGLUT1 and decreased VGAT expression 

Nytrosynapain  reduces neuronal 

hyperactivity 

[105, 

108] 

Lancaster, 

2013 

(STEMdiff

™) 

AD patient 

Fibroblasts 

iPSCs 

PSEN2 (5) Aβ42/40 ratio Neurons Smaller organoid size and calcium 

dysregulation in AD hCOs versus control 

hCOs 

[103] 

Lancaster, 

2013  

  

AD patient 

Fibroblasts 

iPSCs 

APP (6) PSEN1  

(7, 8, 9, 10, 11) 

Aβ38, Aβ40 

Aβ42, Aβ43

  

Neurons PSEN1 and APP mutations alter the 

neurogenesis and Aβ secretome, and 

favour aging and neurodegeneration 

[104, 

106] 

fAD guided hCOs 

Kadoshima, 

2013  

(modified) 

 

AD patient 

Fibroblasts  

iPSCs 

APP dup  

PSEN1  

(1, 7) 

Aβ42/40 ratio 

Aβ Agg 

p-Tau, Tau 

Alt Endosomes 

Neurons hCOs recapitulate the AD pathology and 

the use of β- and γ-secretase inhibitors 

significantly reduces this pathology 

[97] 

Qian, 2016 AD patient 

Fibroblasts 

iPSCs 

APP (6)                                 

PSEN1  

(8,9 ,10) 

Aβ Agg 

p-Tau 

Neurons A risk factor of fAD is the failure of the 

genetic regulator 5-

hydroxymethylcytosine 

[110] 

Qian, 2016 

(modified) 

AD patient 

Fibroblasts  

iPSCs 

PSEN1 (1)                       

PSEN2 (5) 

Aβ Agg 

Tau Agg 

Neurons 

Astrocytes 

Using an adenovirus to introduce Tau into 

fAD hCOs enhances aggregation and 

phosphorylation of the Tau protein 

[102] 
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Park, 2023 AD patient 

Fibroblasts 

iPSCs 

PSEN1 Aβ Agg   

Alt astrocytes 

Alt dendrites 

Neurons 

Astrocytes 

Spheroid protocol to use hCOs in 

pharmacological assays 

[99] 

Yan, 2018 AD patient 

Fibroblasts 

iPSCs 

PSEN1 (4) Aβ42 

p-Tau                               

Neuroinflamma

tion 

Neurons hCOs to study of the microenvironment in 

AD brains 

[100] 

Paşca, 2015  

(modified) 

AD patient 

Fibroblasts 

APP (6)                                                    

PSEN1 (11) 

Aβ42/40 ratio 

p-Tau 

Neurons 

Astrocytes 

Hippocampal hCOs for the study of AD. 

NeuroD1 to help in AD gene therapy 

[109] 

Sloan, 2018 AD patient 

Fibroblasts 

PSEN1 (12) Aβ Agg 

p-Tau 

Neurons Nanoparticles, as STB-MP, help to reduce 

the pathology of the AD 

[101] 

Amin, 2018        

Birey, 2017 

AD patient 

Fibroblasts 

iPSCs 

PSEN1  

(13, 14, 15) 

Aβ42/40 ratio 

p-Tau 

Neurons Mutations in PSEN1 increase the Notch 

pathway, promoting generation of 

neuronal precursors 

[107] 

sAD non-guided hCOs 

Lancaster, 

2013  

AD patient 

Skin Biopsy 

iPSCs 

PITRM1 KO Aβ42/40 ratio 

p-Tau 

Neurons Absence of PITRM1 causes a pathology 

similar to AD due to mitochondria 

dysregulation 

[126] 

Lancaster, 

2013 

(STEMdiff

™) 

AD patient 

Skin Biopsy 

iPSCs 

APOE ε3/ε3                         

APOE ε4/ε4 

APOE KO 

Aβ Agg 

p-Tau 

Neurons 

Astrocytes 

APOE4 increases p-Tau as well as cell 

apoptosis. APOE-/- hCOs to study 

pathological mechanisms in AD 

[19, 

123] 

Lancaster, 

2013 

(STEMdiff

™) 

AD patient 

PBMCs 

iPSCs 

APOE ε3/ε3 

ε4/ε4 

Aβ42/40 ratio 

p-Tau, Tau 

 

Neurons 

Astrocytes 

Development a platform to evaluated new 

drug to treat AD 

[118] 

Lancaster, 

2013 

(STEMdiff

™) 

Healthy  

Fibroblasts 

iPSCs 

APOE ε3/ε3                                    

APOE ε4/ε4 

Aβ secretion 

p-Tau 

Neurons 

Astrocytes 

APOE4 neurons exhibited an increase of 

the synapsis 

[121] 

Lancaster, 

2013 

(STEMdiff

™) 

AD patient 

Fibroblasts 

iPSCs 

APOE ε3/ε3                                    

APOE ε4/ε4 

Aβ40 

p-Tau 

Neurons 

Astrocytes 

APOE4 produces neuronal  dysregulation 

due to the reduction of translocation to the 

nucleus of the repressor silencing 

transcription factor (REST)  

[114] 

Lancaster, 

2013 

(STEMdiff

™) 

Healthy 

Fibroblasts 

iPSCs 

APOE ε3/ε3                                    

APOE ε4/ε4 

Aβ Agg 

p-Tau 

Alt lipids 

Neurons 

Astrocytes 

Role of APOE4 expression in neurons and 

astrocytes related to AD pathology 

[115] 

Lancaster, 

2013       

(modified) 

H9 hESCs ND Aβ Agg 

Neuroinflamma

tion 

Neurons 

Astrocytes 

Herpes Simplex Virus 1HSV-1 induces 

AD like pathology 

[128] 

Lancaster, 

2013 

(STEMdiff

™) 

Control  

ASE-9109  

iPSCs  

BIN1 KO APP  Neurons 

Astrocytes  

Oligodendr

ocytes 

BIN1 KO hCOs  present smaller primary 

endosomes, and early AD pathology 

[124] 

sAD guided hCOs 

Raja, 2016 AD patient 

Fibroblasts 

iPSCs 

APOE ε3/ε3                                    

APOE ε4/ε4 

Aβ Agg 

p-Tau 

Neurons 

Astrocytes 

Microglia 

Transform of APOE4 hCOs to APOE3 

hCOs reduces AD symptomatology 

[113] 

Paşca, 2015 AD patient 

PBMCs 

iPSCs 

NS Aβ Agg                    

Tau Agg 

Neurons 

Astrocytes 

First neuro-spheroid model derived from 

AD patients' blood 

[116] 

Paşca, 2015 AD patient 

PBMCs  

iPSCs 

NS Neuroinflamma

tion 

Neurons Found of deregulated proteins in AD 

related with axon development, platelet 

aggregation, RNA translation and 

inflammation 

[117] 
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Lin & Chen, 

2008          

Seki, 2012                  

Paşca, 2015 

AD patient 

Fibroblasts 

iPSCs 

NS Aβ Agg 

p-Tau 

Neurons CKD-504 (HDAC6 selective inhibitor) 

reduces levels of p-Tau 

[120] 

Other non-guided hCOs  

Lancaster, 

2013 

DS 

Fibroblasts 

iPSCs  

APP dup Aβ Agg Neurons 

Astrocytes 

BACE2 as a dose-sensitive AD-suppressor 

gene 

[139] 

Lancaster, 

2013                     

Sheridan, 

2012 

Fibroblasts  

iPSCs 

(CRL-2522) 

ND Aβ Agg Neurons 

Astrocytes 

Treatment with Aftin-5 (β-42 inducer) 

modulates the posttranslational pathways 

of APP 

[132] 

Pavoni 2018 Fibroblasts 

iPSCs 

(CRL-2522) 

Tau (16)  p-Tau Neurons 

Astrocytes 

Overexpression of Tau to study 

neurodegenerative disease 

[137] 

Lancaster, 

2013 

Fibroblasts 

iPSCs 

ND Aβ Agg 

Tau Agg 

Neurons Treatment with serum obtained from post-

mortem AD patients increases Aβ and Tau 

in hCOs 

[135] 

Lancaster, 

2013 

(modified) 

PBMCs   

iPSCs 

ND Aβ Agg                      

p-Tau                       

Alt Endosomes 

Neurons hCOs co-stimulated with Aβ.  Estrogens 

reduce AD symptomatology 

[133] 

Lancaster, 

2013 

(STEMdiff

™) 

hESCs   (UE02302) APP (2)                                     

BACE2 (17) 

Aβ42                              

Neural 

apoptosis 

Neurons 

Astrocytes 

The loss-function of BACE2 induce AD-

like pathology 

[140] 

Other guided hCOs  

Raja, 2016 Patient 

FTD iPSCs 

Tau (18)            Tau Agg Neurons Inhibition of p25 reduces p-Tau [136] 

Camp, 2015            

Trujillo, 

2019               

Yao, 2020 

DS  

iPSCs 

(DS1-iPS4) 

ND Aβ Agg                  

Tau Agg 

Neurons DS hCOs show accumulation of Aβ42 and 

Tau, as observed in AD 

[112] 

Zhang, 2023 iXCells  

Biotechnologies 

iPSCs 

ND Aβ42                       

Alt Mitophagy 

NS hCOs treated with Aβ42. Galangin reduce 

Aβ42 mitophagy and produce an increment 

of PTEN-induced kinase 1 (PINK1) 

[134] 

aiPSCs: induced Pluripotent Stem Cells; hESCs: human Embrionic Stem Cells; DS: Down Syndrome; PBMCs: Peripheral Blood Mononuclear Cells; FTD: 

Frontotemporal Dementia.  
b1: A264E; 2: Swedish; 3: ΔE9; 4: M146V; 5: N141I; 6: London; 7: M146I; 8: int4del; 9: Y155H; 10: M139V; 11: R278K; 12: 14q24;  13: L435F; 14: 

M146L; 15: D385A; 16: P301S; 17: G446R; 18: P301L; KO: Knock Out; dup: duplication; ND: Not Disease mutation. 
cAβ42/40: Aβ42/ Aβ 40; p-Tau: hyperphosphorylation of Tau protein; Agg: Aggregates; Alt: Alterated. 
dNS: Not Specified. 

 

3.2.1. Familial Alzheimer Disease (fAD) 

 

One of the first AD studies performed using COs was that of the Raja 

group, using different hiPSCs from patients with fAD (APP duplication 

or PSEN1 mutations) and the protocol described by the Kadoshima 

group in 2013. In this work, AD-associated pathology was observed in 

these organoids, such as amyloid aggregation, p-Tau protein and 

endosome abnormalities compared to controls. They also observed that 

the use of β-secretase and γ-secretase inhibitors resulted in a reduction 

of Aβ and p-Tau [97].  

 

Many authors have focused on studying diverse PSEN1 mutations that 

appears in most of the fAD cases [98]. Using guided hCOs models, 

researchers have observed AD pathology events as increased levels of 

Aβ42, decreased neural dendrite size [99], elevated gene expression of 

proinflammatory cytokines (IL-6 and TNF-α), upregulated syndecan-3, 

altered expression of matrix proteins and prominent levels of p-Tau 

[100]. In addition, some research models of hCOs of neurons and 

astrocytes from AD patients have also been proposed to test drug 

efficacy reducing Aβ aggregation [99]. hCOs has been used to study the 

microenvironment and test how to decrease the pro-inflammatory profile 

found in AD [100], and also as screening platform for novel AD 

treatment assessments as the effect of nanoparticles [101].  

 

PSEN2 mutation has hardly been considered in hCOs, probably due to 

its lower incidence [98]. The few studies using PSEN2 mutations have 

observed an increase in Aβ42/Aβ40 ratio, increased p-Tau, 

asynchronous calcium transients, enhanced neuronal activity, and 

smaller hCOs size [102, 103]. An increase in caspase-3 in PSEN2 hCOs 

has also been detected associated with a high level of apoptosis [103]. 
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The increase in the levels of p-Tau with adeno-associated virus was used 

in these PSEN2 hCOs as a research model to study tauopathies [102]. 

 

In addition to analysing the effect produced by mutations in PSEN1, it is 

interesting to compare them with the effects found due to mutations or 

duplication of APP, also present in fAD. hCOs with mutations in PSEN1 

or in APP, generated with unguided protocol, show an increase in the 

Aβ42/ Aβ40 ratio, although present differences in the length of the Aβ 

fragments [104], and in the ratios [105]. hCOs with some mutations in 

PSEN1 produce premature neuronal differentiation, possibly due to a 

reduction in the notch pathway [106]. However, other PSEN1 mutations 

show upregulation of the notch pathway leading to an increase in neural 

progenitors as well as the reduction of post-mitotic neurons [107]. These 

PSEN1 mutations causing alterations in the notch pathway suggest that 

neural stem cell biology is affected in aging and disease. Regardless of 

the mutation, all fAD hCOs exhibit synaptic dysfunction, showing 

increased expression of VGLUT1 and decreased VGAT. In addition, 

further studies have observed that NitroSynapsin could be a good 

candidate to palliate these alterations [105, 108].  

 

Other authors have opted to compare PSEN1 and APP mutations using 

hCOs from guided protocols. They observe Aβ aggregation, increase in 

the Aβ42/Aβ40 ratio, alterations in synaptic proteins or increase in p-

Tau [109, 110], as seen using hCOs from non-guided protocols [104-

106, 108]. Differences in the alterations are found also depending of the 

mutation [104, 109]. Alterations at the epigenetic level have been found 

using these models with a decrease in 5-hydroxymethylcytosine [110] 

and an increase in miRNA125b. The alterations at the mitochondrial 

level appear to be able to be regulated using NeuroD1 gene-based 

therapy [109].  

 

Apart from using iPSCs from AD patients, it is also possible to use lines 

derived from down Syndrome (DS), since the extra copy of APP, 

producing as PSEN1 hCOs, presence of Aβ plaques, NTFs [111], or p-

Tau [112], regardless of the protocol used to generate hCOs. 

 

3.2.2. Sporadic Alzheimer’s Disease (sAD) 

 

Most studies have focused in obtaining models of organoids based on 

fAD mutations rather than sAD, in part, because studies conducted on 

sAD hCOs have observed that they take longer to present associated 

histopathology [113]. Even with this handicap of time, this type of model 

can be useful when recapitulating the AD phenotype, such as 

acceleration of maturation and synapses, increase in the Aβ42/Aβ40 

ratio, increase in p-Tau [19, 114, 115], as well as the increase in lipid 

droplet [115] allowing studying the alterations that trigger AD without 

being subject to mutations of fAD. 

 

These hCOs sAD models have also laid the foundations for the 

generation of platforms that allow us to detect new useful drugs against 

AD. This is because apart from collecting the AD phenotype, they also 

allow studying drug penetration, as well as studying alterations in 

numerous pathways: axon development, platelet aggregation, RNA 

translation, inflammatory ions [116, 117] when comparing the spheroids 

with post-mortem brains from AD patients. Platforms that are more 

recent have used organoids with APOE3 and APOE4 identity together 

with RNA-seq, calcium, and protein quantification analysis against 

controls to establish a mathematical platform for more realistic drug 

testing [118]. 

 

The investigations carried out on hCOs originating from lines of sAD 

patients, in contrast to the studies carried out with fAD organoids and, 

as already mentioned, with their use to generate drug testing platforms, 

have been considered from the perspective of obtaining possible drugs 

to alleviate symptomatology. An example would be its use to learn more 

about tauopathies. Based on the 2D culture background where a 

relationship between Tau and acetylated histone 6 (HDAC6) was 

observed [119], the use of the compound CKD-504, a selective and dose-

dependent anti-HDAC6, has been studied on these hCOs, obtaining a 

reduction in p-Tau levels [120]. 

 

This use of hCOs to search for alternatives to alleviate the disease has 

also occurred in organoids obtained from lines with the main risk factor 

in sAD, the APOE gene. Mainly, lines with APOEε4/ε4 have been used 

for this purpose, as they are the most aggressive and the only isoform 

where p-Tau and lipid droplet in hCOS can be seen [19, 114, 115, 118], 

as well as APOEε3/ε3. Some factors, such as the repressor element 

silencing transcription factor (REST) 1, have been identified as delaying 

the onset of symptoms in hCOs APOE4 [114]. A reduction in symptoms 

has also been observed when APOE4 lines are converted to APOE3 

using CRISPR/CAS9 techniques [19, 113], although there are authors 

who consider that these differences are due more to variations in the 

culture of hCOS than in the isophorm used for its generation [121]. 

 

Despite the lack of depth on how APOE affects to trigger AD [122], its 

relationship in the loss of typical synapses in AD is known, by acting on 

the synaptic protein α-synuclein [123] as well as its importance in lipid 

control, mainly at the neuronal level [115, 123]. However, APOE is not 

the only gene of interest in sAD. Recent studies are beginning to focus 

on other genes that might predispose to AD. This is the case of bridging 

integrator (BIN), which influences the size of the primary endosomes, 

depending on the isoform present, with isoform 1 (BIN1) being highly 

associated with early alterations in AD [124]. Likewise, another gene 

whose alteration is known to affect the correct degradation of Aβ in 

mitochondria and alters the potential of the mitochondrial membrane is 

PITRM1 [125]. Studies on hCOs PITRM1 knockout showed AD-like 

pathology: protein aggregates, tau pathology, and cell death. 

Mitochondrial alteration was also appreciated, as well as deregulation of 

astrocytes [126]. 

 

Apart from these, various risk factors for sAD, certain studies have 

considered focusing on the risks of developing sAD due to viral 

infections. It has been observed that we start from healthy lines infected 

with HSV-1 [127, 128], or from lines of AD patients infected with the 

zika virus [129], organoids develop with an increased AD phenotype. 

Another virus that could have implications for AD is SARS-CoV-2, as 

it has been associated with destruction of microglia [130], as well as 

infection of cells with the APOE4 phenotype [72]. Even though it can be 

considered a way to model AD, using antivirals results in a decrease in 

AD-like [127, 128], so they end up being a realistic model of the 

pathology. In addition to viruses, also bacterial infections could 

influence the onset of AD. It has been observed that in these infections 

there is an increase in the Aβ level, since it would have a protective role 

against antimicrobials [131].  
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3.2.3. Other Approaches to the Study of AD 

 

Another way to model AD without using fAD or sAD patient lines is by 

inducing the disease from healthy lines. A factor that allows this 

modulation is aftin-5, which when used on healthy hCOs, it is observed 

that produces an increase in Aβ42, which is also modulable [132]. 

Another alternative is based on inducing the pathology by stimulating 

them with Aβ [133, 134] or with serum from AD patients, which makes 

it possible to observe, in addition to Aβ and Tau aggregates, neuronal 

loss and other alterations [135]. 

 

Apart from inducing the pathology with various factors, we can submit 

healthy lines to CRISPR/Cas9 genomic editing or through the use of 

vectors, so that they express AD. Following these methods, hCOs have 

been developed in a way that allows us to study the tauopathies [136, 

137]. Tau is observed to appear early in human brain development and 

the concentration of its mRNA is greatly increased in mature neurons 

[138], for this reason, it is sought how to counteract its effects. For 

example, p25, a proteolytic fragment of the p35 regulatory subunit, has 

been shown to induce aberrant cyclin-dependent kinase 5 (Cdk5) 

activity, which is associated with neurodegenerative disorders such as 

AD. In organoids, in which Tau effects were induced, p25 blockade was 

shown to reduce p-Tau levels and increase synaptophysin expression 

[136]. This type of model allows us to focus on specific causes of AD 

for a preliminary study where we can simplify the disease. 

 

Although the genes or histopathologies associated with AD are usually 

studied, some groups have preferred to focus on learning more about 

genes or factors that are protective against the pathology. One of these 

genes is BACE2, located on chromosome 21. Using organoids from 

patients with DS (with an extra copy of APP) and AD (APOE3 

phenotype), the effects of BACE2 have been studied. This gene was 

found to produce high levels of amyloid-free peptides and Aβ 

degradation products [139]. However, in addition, if we start from a line 

with mutations in BACE2, the organoids that are generated will present 

a pathology similar to AD [140]. Similarly, ADAM10, the gene encoding 

α-secretase, is interesting, since this secretase can cleave APP instead of 

β-secretase without giving rise to Aβ peptides. In organoids that have 

been induced for AD by Aβ peptides, it is observed that activation of 

ADAM10 reduces the pathology. The levels of these peptides can be 

reduced by adding oestrogens to the medium, since these are involved in 

ADAM10 activity [133]. Continuing with this type of stimulation to 

obtain AD in organoids, a decrease in mitophagy has also been observed, 

as well as one of its associated genes, PINK1. It was observed that this 

reduction could be alleviated with the addition of a flavonoid called 

galangin [134]. 

 

4. Future Perspectives 

 

Recent advances in the field of cell cultures have opened up a wide range 

of opportunities in the study of human diseases, making it possible to 

overcome the disadvantages of previous models. Despite the advantages 

of animal models, such as their easy genetic manipulation, physiological 

differences with the human brain have led to the emergence of in vitro 

2D models [141]. These 2D cultures allow obtaining highly pure, 

homogeneous and reproducible cell cultures, but they cannot recreate 

some neurodevelopmental events, such as cell-scaffold interaction or the 

influence of some cells on other cell types [34]. For this reason, hCOs 

have caused a great revolution [142]. Even so, animal models and 2D 

cultures remain important for preliminary steps in research [104, 127], 

as they allow the results to be verified at different levels. Also, when it 

comes to neurodegenerative diseases and age-related disorders, it should 

be noted that, hESCs and other stem cells have a fetal or embryonic cell 

age, which is a limitation for these studies [105, 127]. 

 

As explained above, in vitro 3D models have compensated for the 

shortcomings of previous models, providing a more reliable view of cell 

interaction, drug response, and spatiotemporal development. Other 

advantages are that it can allow us to obtain organoids from patients for 

more personalized treatment [82] whole organoid image analyses can be 

performed for a global understanding [143]. It also allows us to 

reproduce and study the extracellular environment [100], how to use 

them for the creation of virtual platforms, allowing us to test new 

strategies without long protocols or ethical conflicts [118, 144, 145], or 

delving into stem cell therapy [146]. However, obtaining these organoids 

requires long-term experiments due to slow growth and the times 

required for cell maturation, aging and senescence [147].  

 

One of the disadvantages of hCOs is ageing, which is due to hypoxic 

areas in deep regions due to poor perfusion of nutrients and other 

substances, as they lack vascularisation [148]. This limits in-depth study 

of neurodegenerative phenotypes and chemical detection. Several 

strategies have been proposed to address this. A first option would be to 

use support materials, such as matrigel, porous structures, hydrogels or 

polymeric materials [149-151]. Even so, these structures are difficult to 

use, so improvements are still being sought [152], or not relying on 

supports for their cultivation [153]. Another option that has been 

considered is to vascularize hCOs. To this end, it has been proposed to 

transplant organoids into mice [154, 155], but also to directly generate 

this vasculature [156-158]. Another option for vascularisation would be 

through co-culture with cells [159-161]. Studying vascularisation would 

allow us to learn more about the blood-brain barrier (BBB), whose 

permeability increases in AD, allowing us to improve drug screening 

[162]. The last strategy that has been proposed is to reduce senescence 

[163, 164]. 

 

The heterogeneity of organoids is another of its limitations. The use of 

embryoid bodies is a bottleneck for organoid formation, decreasing 

efficiency and homogeneity. Other factors that increase their 

heterogeneity are the culture conditions themselves [121], the AD 

mutation to be studied [129], the material of the plates where they are 

cultivated or in which at the time of the protocol, matrigel is used [165]. 

 

Another drawback is that, so far, most protocols have failed to 

recapitulate all of the cell types that make up the brain. Even so, one 

group had recently created a 2D triculture of neurons, microglia, and 

astrocytes [166, 167]. This opens up an opportunity to create three-

culture organoids for more complex models. For example, it is already 

possible to obtain spheroids that also include oligodendrocytes [168]. 

The same as obtaining mixed organoids of neurons and astrocytes by 

fusing them after culturing each cell type independently [115]. 
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5. Conclusion 

 

As seen throughout this review, 3D culture models, with an emphasis on 

hCOs, appear to be one of the best models for advancing AD research 

today. Compared to previous models (in vivo animals and 2D in vitro 

cultures), hCOs have been found not only to be more efficient, but also 

to recapitulate some of the most striking features of AD pathology. This 

has allowed enormous progress in the field in recent years. 

 

Human hCOs, by recapitulating a large part of the complexity of the 

human brain and due to the innovation of their technology, are quickly 

positioning themselves in a very interesting model for the study of the 

molecular and cellular pathology characteristic of AD at the brain level. 

These hCOs can be generated from control iPS cells or from AD patients, 

both fAD and sAD, allowing mutations or genes of interest to be 

introduced or deleted by gene editing. Thus, new therapeutic targets or 

possible treatments could be determined more quickly.  

 

Another advantage of hCOs is that it is a very suitable technology to 

further investigate the interactions of the different phenotypes of brain 

cells (neuron-astrocytes-oligodendrocytes-microglia), under not only 

physiological conditions, but also pathological ones. Although, there are 

still challenges to improve and deepen the use of these models, even with 

the current limitations, great results have already been achieved, 

allowing for a better understanding of AD, as well as advances in 

potential therapies. 
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